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Abstract Overt articulation produces strong artifacts in the

electroencephalogram and in event-related potentials

(ERPs), posing a serious problem for investigating lan-

guage production with these variables. Here we describe

the properties of articulation-related artifacts and propose a

novel correction procedure. Experiment 1 co-recorded

ERPs and trajectories of the articulators with an electro-

magnetic articulograph from a single participant. The

generalization of the findings from the single participant to

standard picture naming was investigated in Experiment 2.

Both experiments provided evidence that articulation-in-

duced artifacts may start up to 300 ms or more prior to

voice onset or voice key onset—depending on the specific

measure; they are highly similar in topography across

many different phoneme patterns and differ mainly in their

time course and amplitude. ERPs were separated from

articulation-related artifacts with residue iteration decom-

position (RIDE). After obtaining the artifact-free ERPs,

their correlations with the articulatory trajectories dropped

near to zero. Artifact removal with independent component

analysis was less successful; while correlations with the

articulatory movements remained substantial, early com-

ponents prior to voice onset were attenuated in recon-

structed ERPs. These findings offer new insights into the

nature of articulation artifacts; together with RIDE as

method for artifact removal the present report offers a fresh

perspective for ERP studies requiring overt articulation.
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Introduction

The use of scalp-recorded electroencephalography (EEG)

in investigating human cognition is well established

because the EEG and event-related brain potentials (ERPs)

provide valuable information about the temporal unfolding

of cognitive processes and their organization. However,

these techniques have long played only a minor role in

language production research due to the contamination of

the brain signals by articulation-induced artifacts. Overt

articulatory activities—associated with electrical potentials

due to facial muscle contractions and glosso-kinetic

potentials due to tongue movements—can severely distort

and even obscure the EEG signal (e.g., Brooker and Donald

1980; Grözinger et al. 1975; Wohlert 1993).

In order to avoid articulation-related artifacts, tasks like

delayed naming, silent naming, or manual classifications

have been applied as alternatives to overt articulation (e.g.,

Abdel Rahman et al. 2003; Eulitz et al. 2000; Ganushchak

and Schiller 2008; Jescheniak et al. 2003; Schmitt et al.

2001; van Turennout et al. 1998). Although avoiding

articulation-induced artifacts, these alternatives have dis-

advantages. Specifically, silent naming does not yield

performance measures and button-press tasks may differ in

crucial and unknown ways from natural language produc-

tion (but see Abdel Rahman and Aristei 2010; Hutson et al.

2013).

Despite the unresolved artifact question, a quickly

growing number of studies have acquired EEG data during

overt naming tasks to investigate language production (e.g.,

Aristei et al. 2011; Costa et al. 2009; Dell’Acqua et al.

2010; Ewald et al. 2012; Hirschfeld et al. 2008; Janssen

et al. 2014; Piai et al. 2012, 2014; Wirth et al. 2011; for

evidence from magnetoencephalography see Maess et al.

2001; for reviews see Ganushchak et al. 2011; Indefrey

2011; Strijkers et al. 2010). One strategy used in these

studies is to restrict the analyses in the EEG signals to time

periods before articulation onset as measured by voice

onset, assuming that these periods are not significantly

contaminated by artifacts associated with overt articula-

tion. However, articulation artifacts may start up to several

hundred milliseconds prior to voice onset (Brooker and

Donald 1980), in particular when the speech material starts

with voiceless stops (e.g./p, t, k/), and their precise onset is

unclear. Another strategy is to compare identical utterances

in different experimental conditions, assuming that the

artifacts associated with identical words do not differ

between conditions. However, even if artifacts for identical

words show similar topographical distributions, they may

differentially affect the EEG in case of latency shifts in

artifact onsets. In this case, using EEG-derived ERPs to

understand reaction time differences between conditions

may be problematic even when identical words are artic-

ulated and when only relatively early time periods before

articulation are analyzed.

In order to take best advantage of EEG techniques in

language production research a better understanding of

articulation-related artifacts and a procedure for their

removal is needed. Unfortunately, little is known about the

nature of the artifacts and their contributions to the signals

measured at scalp sites. Since the first reports few attempts

have been made to characterize and eliminate articulation-

related artifacts in the EEG (e.g., De Vos et al. 2010). One

obstacle may be the difficulty to measure not only surface

electromyogram (EMG) of lip, masseter or temporalis

muscle activity but also articulatory movements within the

vocal tract (e.g., tongue and jaw movements possibly

reflected in temporal scalp regions). The opening of the jaw

and displacement of the tongue (the latter investigated by

Vanhatalo et al. 2003) most likely give rise to the large

glossokinetic potentials seen at frontal and posterior scalp

sites.

De Vos et al. (2010) used a blind source separation

method based on Canonical Correlation Analysis to separate

EMG artifacts from the EEG, focusing on muscle-related

artifacts in the frequency range of 15–30 Hz. Most recently

Porcaro et al. (2015) employed an independent component

analysis (ICA) algorithm to separate articulation artifacts

from theEEG recorded in a picture-word interference task.A

novelty of this work is the use of the correlation between

upper and lower lip EMGand independent components (ICs)

as a criterion for successful removal of articulation artifacts.

After discarding the ICs with high correlations with the

EMG, previously very high correlations of the EEG and the

EMG dropped to r = .24 and less.

The present study aims at providing a systematic

description of articulation-related EEG artifacts, and sug-

gesting—on this basis—an alternative method for their

efficient removal. Previous studies have shown that artic-

ulation related artifacts consist in frontal-positive and

posterior negative shifts of the EEG. However, it is not

clear, how the parameters of this artifact, such as onset,

scalp topography and amplitude depend on the phonolog-

ical structure of the speech output.

Importantly, the characterization of articulation artifacts

as well as the control of their successful removal crucially

depends on how well the different sources of the artifact

inside and outside the vocal tract can be captured. This

poses a potential problem because overt speech involves

complex sequences of muscle activities. While muscles

give rise to EMG artifacts in the EEG, these artifacts are

usually in the high-frequency range with a bandwidth of

about 20–300 Hz (Muthukumaraswamy 2013). For exam-

ple, the peak frequency of the masseter muscle, involved in
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speaking (jaw closure) and affecting EEG activity at tem-

poral scalp regions, is around 50–60 Hz (O’Donnell et al.

1974). High frequency artifacts can be greatly attenuated

by low-pass filtering at 30 Hz, the usual range of interest

for language research, but may distort the signal (De Vos

et al. 2010). Another—and hitherto largely unattended—

serious source of artifacts are the changes of the anatomical

configuration of the jaw and tongue during articulation.

Thus, Vanhatalo et al. (2003) showed that modest forward

movements of the tongue induce slow and large electrical

potential shifts of positive polarity in the face and anterior

areas of the head, similar to what has been shown for the

artifacts during speaking. Therefore one should ideally

measure the movements of all articulators in order to

comprehensively monitor the origins of speech related

artifacts.

Consequently, as a first aim and complementing recent

reports relating external muscle activity to EEG measures

(e.g., Porcaro et al. 2015; De Vos et al. 2010), we used 3D

electromagnetic articulography (EMA) to measure the

movements of different articulators, including their direc-

tions in the vertical, lateral, and anterior-posterior direc-

tion; in addition we simultaneously co-registered the EEG

(Exp. 1 with a single participant). This experiment also

provided information on how the parameters of the artifact

relate to different articulation patterns. Experiment 2

investigated the generalizability of the findings from

Experiment 1 to a typical group study with overt picture

naming and the production of existing words.

As a second aim we explored the feasibility of a new

method to separate and remove the articulation artifact

from the EEG data in both experiments, applying RIDE

(e.g., Ouyang et al. 2015a, b) described in detail below. A

comparison with ICA, as applied by De Vos et al. (2010)

and Porcaro et al. (2015), was provided as well.

Experiment 1

Here we co-recorded articulator movements with EMA and

the EEG while a single participant repeatedly articulated 15

different disyllabic words with specific articulatory pat-

terns. The purpose of the recording was to (1) compare

artifactual activity in the EEG for different articulatory

patterns, and to (2) obtain information about the temporal

relationships of both voice onset and artifact onset relative

to articulatory movements, and (3) assess the success of

two artifact correction approaches.

The problem of any artifact correction method without

external criterion is to know the true—artifact-free—sig-

nal. This problem has beset methods for correcting eye-

movement induced artifacts for a long time although an

external criterion by recording eye-movements with eye-

tracking is readily available (cf. Dimigen et al. 2011). In

principle, by correlating EEG activity with an independent

measure of the putative artifact, it can be assessed whether

the EEG is influenced by the variable in question. If the

relationship is diminished or—ideally—abolished after

artifact correction it shows the success of the method.

Method

Participant

The participant was a female native speaker of German,

aged 42 years.

Materials

A total of 15 disyllabic pseudowords were constructed

covering a wide range of different articulators involved.

We were interested in whether different articulatory pat-

terns would affect the topographies of the artifact: Would

there be one single topography as suggested by previous

studies on overt articulation or would the topography differ

as a function of the articulatory pattern? Here we put the

question of specific versus unitary artifact topographies to a

strong test. The disyllables used were: kata, taka, tata,

kaka, kiti, tiki, titi, kiki, pama, pumu, pimi, pflami, lami,

mipfla, and mila. According to the International Phonetic

Alphabet of German (see Kohler 1999) the vowels /a, i, u/

are the most extreme vowels of the vowel space (also

called corner vowels), with /a/ being the lowest vowel (low

tongue position), /i/ being a front high vowel (tongue with

the highest and most anterior position), and /u/ the most

back high vowel in German (tongue with the highest and

most posterior position). Furthermore, to produce an /a/ the

jaw must be lowered, whereas /i/ and /u/ have a very high

jaw configuration. Moreover, /u/ additionally involves lip

protrusion. Using these three vowels in our speech material

covers the primary phonological vowel features: high vs.

low vowels, front vs. back vowels, and rounded vs.

unrounded vowels. For the consonants we chose /p, m/

which are bilabials and are produced with the lips in

coordination with the jaw, /t, l/ which are realized with the

tongue tip, and /k/ which is realized with the tongue back.

The consonants also differ with respect to an involvement

of vocal fold oscillations—the key measure for the start of

audible speech. /p, t, k/ are voiceless aspirated stops in

German and start with an acoustically silent closure

movement of the lips, tongue tip or tongue back respec-

tively. They are then followed by an acoustically promi-

nent burst with aspiration noise. We expected that these

three consonants show particularly large differences

between movement onset and voice onset. In contrast /m,

l/ are all realized with phonation already during the
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formation of closure and we therefore expected smaller

onset differences for these sounds. Items like /mipfla/ and /

pflami/ were used because they have a different phono-

tactic structure with complex consonant clusters /pfl/

(CCCV) in one syllable and simple consonant–vowel (CV)

combinations in the other syllables. To sum, with this

selection of disyllables we intended to cover a wide range

of different articulatory patterns to test for general differ-

ences in the EEG artifact.

Procedure

Each trial started with a fixation cross presented for

500 ms, followed by the presentation of one of the disyl-

lables on the screen for 1500 ms. After an interval of 1 s of

blank screen the next trial started. The participant was to

speak each word aloud. Each of the 15 disyllables was

presented 40 times, yielding a total of 600 trials. The order

of disyllables was randomized.

Data Recordings

The sound waves were recorded with a dynamic micro-

phone (YOGA DM-302 600 Ohm) and fed into the head-

box for EEG recordings where it was sampled with

1000 Hz, that is, with the same resolution as the EEG.

Voice onsets were identified by applying a threshold

of ±100 lV to the sound wave. Since the maximum level

of the sound waves were between 2000 and 5000 lV, the
threshold corresponded to 1–2 % of the maximum.

According to visual inspection of the sound waves this

threshold allowed to measure early onsets of the isolated

and experimentally specified single words spoken in this

experiment. As verified by visual inspection, there were no

non-speech noises within the relevant epochs. Movements

of the articulators were recorded at a sampling rate of

200 Hz with a 3D-Articulograph (AG 500, Carstens

Medizinelektronik). EMA tracks midsagittal fleshpoint

movements by measuring induced current from receiver

sensors moving in a magnetic field. The magnetic field is

generated by transmitter coils with frequencies from 9 to

16 kHz. Five sensor coils were affixed to the articulators in

the mid-sagittal plane: one sensor at about 1 cm from the

tongue tip (TT), one sensor for the tongue dorsum (TD) at

about 3 cm from the tip and one at the tongue back (TB) at

approximately 5 cm from the tip, one beneath the vermil-

lion border of the lower lip (LL) and one just beneath the

lower incisors (JAW). Three additional sensors were glued

above the upper incisors (UI), the nose bridge (N), and the

left mastoid process below the right ear (E), which served

to compensate for head movements. The movement of each

coil was recorded in the vertical (up–down), lateral (left–

right), and anterior-posterior (front–back) direction. The

system was calibrated and pre-processed using the AG

500’s standard program.

The EEG was recorded with Brain Amp amplifiers

(Brain Products) from 61 electrodes (A1 AF3 AF4 AF7

AF8 AFz C1 C2 C3 C4 C5 C6 CP1 CP2 CP3 CP4 CP5 CP6

CPz Cz F10 F3 F4 F5 F6 F7 F8 F9 FC1 FC2 FC3 FC4 FC5

FC6 Fp1 Fp2 Fpz FT7 FT8 Fz O1 O2 Oz P3 P4 P5 P6 P7

P8 PO3 PO4 PO7 PO8 PO9 POz Pz T7 TP10 TP7 TP8

TP9) where A1 served as initial reference. Sampling rate

was 1000 Hz. Offline, the bandpass was set between

0.0159 Hz (12 dB/oct) and 70 Hz (48 dB/oct; zero phase

shift) with a notch filter at 50 Hz. Blinks were corrected

with the method of Gratton et al. (1983). Six trials with

remaining artifacts were rejected according to the follow-

ing criteria: Voltage steps\20 lV/ms; maximal allowed

difference of values in intervals of 200 ms: 200 lV; min-

imal and maximal allowed amplitudes: ±200 lV. Finally,
the EEG was re-calculated to a common average reference.

As verified by frequency analysis of the unfiltered EEG

signal (time constant: 10 s, high cutoff: 1000 Hz, no notch

filter), the high-frequency magnetic EMA did not disturb

the EEG signals. There was no difference in FFT of EEG

between times with EMA being active and inactive because

the oscillations of the magnetic field of EMA are between 9

and 16 kHz, whereas EEG activity is typically below

50 Hz. In addition, the EEG equipment (electrodes and

cable) did not disturb EMA data acquisition. EMA sensors

were brought as close to the EEG electrodes as possible

and we checked for error reports, unusual velocities or

amplitudes and extreme tilt values in software from the

manufacturer. Errors occurred only when an EMA coil

touched the EEG electrode. During data recording this was

never the case.

Data Preprocessing and Analysis

Residue Iteration Decomposition

ERP consists of several components with different trial-

to-trial latency variabilities. Some components are time-

locked to stimulus onset, others tend to co-vary with

response time while still others are positioned somewhere

in between. A disadvantage of stimulus-locked averaged

ERPs is the blurring of non-stimulus-locked components.

In order to solve this problem, RIDE was developed

(Ouyang et al. 2011, 2015a, b). RIDE decomposes ERPs

into separate component clusters with different trial-to-

trial variabilites, based on external time markers or

estimated single trial latencies. A general framework

consists in separating ERPs into stimulus-locked,

response-locked, and intermediate, latency-variable com-

ponent clusters.
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ERP ¼ S þ C þ R ð1Þ

Components time-locked to the stimulus or to the

response, respectively, are placed into S- and R-component

clusters, respectively. Components that are synchronized

neither to stimulus nor to response are classified into the

(central) C-component cluster. RIDE has been shown to

sharpen the distinction between different ERP components

(e.g., Ouyang et al. 2011, 2013; Stürmer et al. 2013; Ver-

leger et al. 2014; Wang et al. 2015).

The rational of applying RIDE to remove articulation

artifacts is based on the fact that articulation artifacts are

usually large in amplitude and highly variable in latency

from trial to trial as indicated by the variance of voice onset

latencies. Therefore the neurocognitive ERP (denoted as

ERP) and articulation artifact (denoted as AA) can be

treated as two different component clusters with different

latency variability—time-locked to stimulus onset and

speech onset, respectively—jointly constituting the Speech

ERP:

Speech ERP ¼ ERP þ AA ð2Þ

The separation of these two component clusters fully

conforms to the framework of RIDE as a method for sep-

arating components based on different latency variabilities.

If the trial-to-trial latency variability of neurocognitive

ERP components (e.g., P3b, N400) is of concern, the ERP

separated from Eq. (2) can be further subdivided into S and

C (and R if motor activity is of interest). In fact, the

development of the RIDE algorithm aimed to deal with the

variability of ERP sub-components (Ouyang et al. 2011).

However, in the present work, the focus is on the removal

of articulation artifacts from speech ERP data, following

scheme (2). The separation of ERPs into further sub-

components is not further considered in the present work.

We should point out that RIDE is not a general method

for artifact rejection or correction, for example with respect

to ocular or technical artifacts. However, we propose that

RIDE can capture and remove articulation artifacts because

they show significant trial-to-trial latency variability.

The complete RIDE algorithms and an introduction to a

toolbox can be found in Ouyang et al. (2015a, b, http://cns.

hkbu.edu.hk/RIDE.htm). Here, we will give a brief, self-

contained description of how RIDE was applied to the pre-

sent data. After the standard procedure of artifact rejection

(see above), the data was prepared as a three-dimensional

matrix (sampling points, electrodes, trials) inMatlab andwas

directly fed into the RIDE toolbox. Note that the standard

procedure of artifact rejection (removing eye blinks, etc.) is

unable to remove the articulation artifact. A full script for

setting up the parameters and applying RIDE toolbox is

included in the Appendix. Concisely, RIDE consists of a

decomposition module as an inner iteration loop, that is,

decomposing the data into different sub-components based

on the single trial latency information, and a latency esti-

mation module as an outer iteration loop, that is, iteratively

improving the estimation of single trial latency of compo-

nent(s) without external time marker.

Decomposition Module Suppose we already know the

latency information of each component for each single

trial, this inner module separates ERP into different com-

ponent clusters. Initially all component clusters are set to

be zero. To estimate the first component cluster, RIDE

subtracts all the other components from each single trial,

aligns the residual of all trials to the latency of the first

component cluster and obtains the waveform as the median

waveform over all time points. The same procedure is

applied to obtain the second component cluster and so on.

After the first round over all component clusters the algo-

rithm starts again from the first one. The whole procedure

is iterated till convergence.

Latency Estimation Module In the Decomposition Mod-

ule the single trial latencies of all component clusters are

supposed to be known. In reality, some ERP components

(e.g., P3b, N400, P600) are not coupled to an external time

marker. However, RIDE is not limited to separate com-

ponents based on external time markers. For instance, in

the typical scheme of separating ERPs into stimulus-

locked, response-locked and intermediate component

clusters S, R, and C, only the latencies of S and R clusters

are known, that is, stimulus onsets (LS) and response times

(LR), but the latencies of the assumed central component

cluster C are unknown. RIDE uses a self-optimized itera-

tion scheme for latency estimation for the marker-less

component cluster, for example, the C component cluster,

starting with an approximate initial estimation of LC from

the raw data. Woody’s method is used to initially estimate

LC: cross-correlation time courses between the ERP and

single trials are calculated for each single electrode and

averaged across all electrodes. The lag of the maximum in

the scalp-averaged cross-correlation time course for each

single trial is taken as the single trial latency (LC). Starting

with this LC estimate, S, C, and R can be obtained using the

Decomposition Module till convergence. The single trial

latencies of C are further improved by removing S and R

from single trials and applying the cross-correlation

method. The improvement of C latency and component

wave-shapes of S, C and R forms an outer iteration (see the

step-by-step procedure for the present application below).

The term C-component cluster refers to the component

cluster that is latency-variable and has no overt latency

information corresponding to external time markers (like

stimulus onsets and response times). Likewise, the terms

S-component cluster and R-component cluster refer to
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stimulus-locked and response-locked component clusters,

respectively. The RIDE method is extendable to other

schemes, for example, dropping the R-component cluster

when there is no response trigger, or allowing for more

than one C-component cluster.

In the present data, there are two sets of time markers,

stimulus onsets and voice onsets. We followed scheme (2) to

separate the speech ERP into (pure) ERP and AA. Without

considering further internal sub-components, the ERP is

presumably locked to stimulus onset, and can thus be

regarded like an S component cluster. The question is,

whether AA is strictly locked to voice onset. If so, AA can be

regarded like an R component cluster. Therefore, the

scheme becomes: Speech ERP ? S ? R, which does not

require any latency estimation since R is voice onset-trig-

gered. If AA is not locked to voice onset, that is, if voice onset

is a poor indicator of the latency of AA, AA can be treated

like a C component cluster, the latency of which can be

estimated from single trials. The scheme therefore becomes:

Speech ERP ? S ? C. We followed both schemes and

compared their performances in the result section.

A step-by-step procedure of decomposing ERP into S

and C for the first dataset can be described as follows:

(1) Use the template matching (from the latency

estimation module mentioned above) scheme to

estimate the single trial latency of C;

(2) Average all single trials to stimulus onset and obtain

an estimation of S;

(3) Remove S from all single trials, synchronize all

single trials to the latency of C and obtain an

estimation of C;

(4) Remove C from all single trials. Synchronize all

single trials to stimulus onset and obtain an

improved estimation of S;

(5) Iterate (3) and (4) to improve the estimation of S and

C until convergence;

(6) Improve the estimation of the single trial latency of

C from single trials after removal of S using the

template matching scheme from the latency estima-

tion module.

(7) Iterate (3)–(6) until convergence of the latency

estimation and obtain the final S and C.

A step-by-step procedure of decomposing ERP into S

and R for the first dataset would be as follows:

(1) Average all single trials time-locked to stimulus

onset and obtain an estimate of S;

(2) Remove S from all single trials, synchronize all single

trials to the voice onset and obtain an estimate of R;

(3) Remove R from all single trials. Synchronize all

single trials to stimulus onset and obtain an

improved estimate of S;

(4) Iterate (2) and (3) to improve the estimates of S and

R until convergence.

A graphical scheme of the scenario is shown in Fig. 1.

Independent Component Analysis (ICA)

ICA (Delorme and Makeig 2004) was applied to the data

after correction for eye-movements and after standard

artifact rejection (see above). The purpose of applying ICA

to ‘cleaned’ EEG data was to check whether ICA is effi-

cient to remove the—likely artifactual—frontal posi-

tive/posterior negative activity in the EEG related to

articulation that is comparable to a regular ERP component

in amplitude and waveform (see also below). For the ICA

on cleaned data, the default setting of the runica function in

the EEGLAB version 13 (non-extended) was used. PCA

reduction was not applied. Learning rate was heuristically

determined by the toolbox based on the data and was � 1;

block size was determined in the same way and

was � data length. The training was terminated when

weight change was less than 1 9 10-6 and maximal

number of training steps was 512.

In the context of ICA, ‘component’ refers to an inde-

pendent source that contributes to the scalp activities with a

specific weight distribution. In contrast, in the context of

RIDE, ‘components’ are defined as parts of an ERP

waveform that are temporally coupled and show similar

trial-to-trial latency variability (Ouyang et al.

2011, 2015a, b).

After application of ICA, five ICs with topography

patterns most similar to frontal positive/posterior negative

artifacts were removed from the original data. The simi-

larity between the ICs and frontal positive/posterior nega-

tive artifacts was calculated according to the following

procedure. Firstly the topography from the grand average

ERP was obtained from the time window during which the

frontal positive/posterior negative artifact was most

prominent, [600, 800 ms] for the first dataset by visual

inspection. The Pearson correlation coefficient between

this topography and the topography of each IC (projected

to the scalp) was calculated. An artifact IC is expected to

resemble the articulation artifact in both topography

(frontal positive/posterior negative) and waveform (in-

verted u-shape). Note that the polarity of an IC is mean-

ingless by definition, so an IC with frontal

positive/posterior negative topography and inverted

u-shaped waveform is equivalent to one with frontal neg-

ative/posterior positive topography and u-shaped wave-

form. So, ICs having similar topography with articulation

artifact but opposite waveforms (one being u-shaped and

the other one being inverted u-shaped) or the other way

around, were not classified as reflecting the artifact. ICs
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having opposite topographies to the articulation artifact and

also opposite waveforms were classified as representing the

artifact. Therefore, the sign of the correlations was cor-

rected by multiplying it with the overall polarity (?1 or

-1) of IC activation (stimulus-locked-averaged across tri-

als and baselined at [-200, 0 ms]). Please note that, at

variance with Porcaro et al. (2015), we did not employ the

spectrum pattern of ICs as an additional criterion for

selecting artifact ICs because, unlike high-frequency arti-

facts, articulation artifacts show predominantly low-fre-

quency features (similar to a 1/f signal). Almost all the ICs

showed 1/f-like patterns and the external signals from

tongue, lip, and jaw movements were also low-frequent.

Hence, all Pearson correlations between the spectra of the

tongue movement activity and the spectra of ICs were very

close to 1.0 (ps\ .01). Therefore, the spectral information

of ICs could not serve as a selection criterion in the present

case.

Results

We will first describe the relationship between the ERPs

and the articulation data, that is, articulator movements as

recorded by the EMA and voice onsets. Then we will apply

and evaluate two methods to eliminate the contribution of

the articulation artifact to the ERP, namely, RIDE and ICA.

We will compare the performances of RIDE with and

without using external time markers (voice onsets) in

separating the articulation artifact.

Relation Between ERPs and Articulation Data

On average, the interval between stimulus onset and voice

onset was 649 ms (SD = 44 ms) ranging from 563 to

705 ms (‘‘mila’’ to ‘‘titi’’). Figure 2a shows the average

ERP to each disyllable. Highly conspicuous is the very

strong activity starting at about 500 ms after visual word

presentation onset. Although the amplitudes differ across

words, the late activity is always very strong and at around

100 lV across all electrodes.

Next we applied RIDE to the ERPs. As mentioned

above, we applied two schemes for separating ERPs and

artifacts, (1) by treating the artifact as time-locked to voice

onset and (2) by estimating the single trial latencies of the

artifacts. In order to compare the efficiency of these

schemes, we used the following two criteria.

(1) If the voice onset time marker is more precise than

latency estimation, the average coil activities will

show clearer waveform pattern, e.g., less blurred,

when time locked to the former as compared to the

latter. In Fig. 3, left panel, we show the averaged

coil activity (from the up-down movement) locked to

both voice onset time and estimated latency by RIDE

(as a C component), for one disyllable. It is clear that

the waveform locked to voice onset is less blurred in

terms of high frequency (*6 Hz) content, though

the low frequency parts are comparable. It is

plausible because the latency estimated from single

trials is based on the low-frequency content (the

cross-correlation curve was low-pass filtered at 4 Hz

in a default setting of the RIDE toolbox, Ouyang

et al. 2015a) to avoid distortions by alpha EEG

oscillations.

(2) Likewise, the artifact component separated by RIDE

would show larger amplitudes or finer waveform

details if the time marker is more precise. Figure 3,

right panel, shows again the superimposed artifact

waveform separated by RIDE based on the two

schemes. It again supports the superiority of voice

onset over estimated latency as the waveform is finer

and displays larger amplitudes in high frequency

oscillations (e.g., around measured voice onset).

Such fine structure is more strongly smeared towards

smaller amplitudes when the estimated latency has

Fig. 1 Schematic illustration of the RIDE decomposition at one electrode site for two component clusters (S and R) with different trial-to-trial

latency variability (Color figure online)
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additional jitter compared to the voice onset. The

result from Fig. 3 is from a single disyllable, but the

pattern (i.e., finer structure based on voice onset) is

highly consistent across all disyllables. Because

averaging the waveform across all disyllables again

smears the high frequency pattern, only a single

disyllable is shown rather than an average across all

disyllables.

Despite an apparent advantage of voice onset based

separation, the estimated C latency is precise enough to

retain the main low-frequency part of artifact.

Figure 4 shows the decomposition of the overall ERP

into S- and R-component clusters. In line with our

expectation, the S component resembles a typical neu-

rocognitive waveform pattern within the normal amplitude

range whereas R captures the huge artifact. Note that there

is a significant amount of temporal overlap between S and

R.

Figure 2b depicts the scalp distribution of the R-com-

ponents between 600 and 800 ms after stimulus presenta-

tion for each disyllable, where the R-component

amplitudes were maximal. Please note the much larger

color scale as compared to Fig. 4. The topographies are

highly similar across the different words. Principle com-

ponent analysis showed that one principle component

explained 94.3 % of the variance in the RIDE-derived

Fig. 2 a Grand mean ERP (top left) and individual ERPs for each

disyllable. Waveforms for all electrodes are superimposed. b To-

pographies of articulation artifacts (R-component clusters, separated

by RIDE using voice onsets) for each disyllable averaged for the time

window where it was strongest [600, 800 ms] (Color figure online)

Fig. 3 Comparison of time

markers used to extract artifact.

a The average coil activity in

up–down direction

synchronized to the median of

voice onsets (VO, black) and to

the estimated C latency (gray).

b The separated artifact

component based on the voice

onset (black) and on the

estimated C latency (gray),

from the Fpz electrode
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R-component cluster; therefore, it seems that the R-com-

ponent cluster, which putatively captures the articulation

artifacts, is unitary and its topography does not notably

depend on the particular articulation pattern.

To test the similarity of the topographies across disyl-

lables, we applied the topographical dissimilarity measure

(DISS) described by Murray et al. (2008). According to

Murray et al. (2008), the DISS score between two scalp

maps is defined as:

DISS¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where ui (vi) is the voltage of electrode i in the map u (v), �u

(�v) is the average voltage of all electrodes in the map u (v),

and N is the number of the electrodes in each map. DISS

values range from 0 to 2, reflecting identical and com-

pletely opposite topographies, respectively. Because there

was only one participant in this experiment a permutation

test was applied to single trials. In each permutation, all

single trial ERPs for a pair of disyllables were mixed and

each single trial was randomly assigned to one of the

disyllables; afterwards the DISS value between the aver-

aged topographies of the two newly assigned conditions

was calculated. In this way 10,000 permutations were

performed, yielding the same number of DISS values. The

associated p value is defined by the proportion of DISS

values of the permutations exceeding the DISS value

between the two average scalp maps to the pair of disyl-

lables in question.

The pairwise comparison among the 15 disyllables (105

pairs) generated mean DISS values of 0.143 (SD = 0.044),

indicating that the topographies are highly similar across

disyllables. Though mean DISS had small values, the

measure is sensitive to subtle differences when submitted

to permutation testing. The Bonferroni corrected p values

generated by DISS analysis revealed topographical differ-

ences between 26 disyllable pairs with distinct articulation

patterns (e.g., ‘pama’ and ‘kiti’; p\ .05), whereas 79 pairs

with similar patterns had indistinguishable topographies

(e.g., ‘kiki’ and ‘kiti’; p[ .05).

This single participant study allowed us to directly relate

the EEG signal to articulatory movements. Figure 5a

shows the global field power (GFP) of the activity captured

in the R-component cluster in the interval [-800, 1000 ms]

relative to voice onset, averaged over all stimuli. Super-

imposed we show the movements averaged across all five

coils in each of the three spatial dimensions. This fig-

ure shows that GFP starts together with the movements of

the articulators (at least in the vertical and lateral dimen-

sions); this joint onset of movement and R-component

cluster activity occurs already 300–400 ms prior to the

audible voice onset. The vertical (UD) direction seems to

give the clearest signals overall. Therefore, we used this

signal to make comparisons for movement onset and

R-component cluster onset for each disyllable (Fig. 5b).

Fig. 4 RIDE separation of component clusters in Experiment 1. Left

Grand mean ERP and RIDE-separated component clusters S and R.

The scale of the vertical axis for S is enlarged to highlight the details

of S, which basically captures all the early components of the ERP.

Right The topography evolution of ERP, S, and R. The color scale is

constrained to a small range (±10 lV) in order to better show the

patterns in the early time window. Note the different color scale as

compared to Fig. 2 (Color figure online)
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In Fig. 5b one can see that for each disyllable GFP and

vertical movement onset are largely co-occurring. This

impression was verified by measuring the onset of each

signal type for each disyllable. The onsets were measured

with thresholds of 5.0 lV for GFPR and -1.0 mm for

vertical coil displacements (baseline at [-800, -500 ms]

relative to voice onset). Figure 5c shows the scatter plot for

these measurements together with the label of each disyl-

lable, demonstrating the very high correlation of these

onsets (Pearson’s r = .92; p\ .0001). Although this cor-

relation value should depend on the thresholds chosen for

measuring the onsets of GFPR and coil displacement, the

present result is sufficient for showing the association

between EEG artifact and articulation movement. It is

worthwhile to note that the correlation value was .94 when

the artifact was separated by the S ? C scheme. This is

plausible since the smoother artifact waveform was

obtained due to the low-pass setting in C latency estimation

(see Fig. 3b) makes the onset measurement less affected by

noise. Figure 5c also shows that these onsets are quite

variable and range from -100 to -300 ms depending on

the word, given that the onset threshold was set to be rel-

atively high for reliable detection.

Closer inspection of Fig. 5b shows that not only the

onsets of the GFP in the EEG and the EMA are similar;

also the time courses are sometimes very similar for at least

some disyllables, although the shapes of these curves

appear to be specific for the articulation patterns of the

disyllables. To quantify the similarity of the time courses

we calculated the Pearson correlations of the grand-aver-

aged vertical coil signals with the grand-averaged GFP in

the R-component cluster over time in the interval between

-500 and ?1000 ms relative to voice onset for each word.

The Pearson correlations are lowest for the anterior-pos-

terior direction (r = -0.58 ± 0.54) and of similar high

magnitudes for the vertical (r = -0.88 ± 0.1) and lateral

(r = -0.90 ± 0.08) directions.

Artifact Correction

If RIDE is effective in eliminating articulation artifacts by

taking out the R-component cluster, the similarity between

the time courses of articulatory movements and the residual

ERP should be much smaller than when the artifact is still

present. We calculated the Pearson correlation between the

mean waveforms from the five coils and the ERP time

Fig. 5 a Relationship between global field power (GFP) of the RIDE-
derived R-component cluster and coil activities synchronized to voice

onset (VO). A1: GFPR: GFP of R-component cluster (grand mean

over all disyllables) and the averaged activities for each movement

direction (FB front–back, LR left–right, UD up–down) from five coils

and across all disyllables. A2-A4: Coil activities for each movement

direction and coil (LL lower lip, TD tongue dorsum, TB tongue back,

TT tongue tip, JAW lower incisors). b Superposition of the global field

power of the R-component clusters (black, left axis) and the vertical

movement signals (gray, right axis) for all 5 coils, synchronized to

voice onset (time zero). Polarity of displacement has been inverted for

ease of comparison with GFP of EEG. c Onsets of global field power

of the R-component cluster versus onsets of articulation for each

disyllable (Color figure online)
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course for every single trial and every electrode, which was

then averaged for each disyllable. Figure 6, left column in

each panel shows the distribution of the correlations for all

disyllable before removal of the R-component cluster.

After removing the R-component cluster from the ERP,

correlations fell to r\ .1 (Fig. 6a–c, Column 2 in each

panel).

To see how well the artifact removal works even without

utilizing the voice onset information we also showed the

correlation value based on the S ? C scheme, i.e., removal

articulation artifact derived by C component based on

single trial latency estimation assuming that voice onset is

not available. Surprisingly, it seems that the S ? C

scheme actually removes the artifact more cleanly as

shown by the slightly smaller correlation value (Fig. 6a–c,

Column 3 in each panel). This strongly indicates that,

although the artifact waveform extracted as C is not finer

than voice onset-based in terms of waveform details

(Fig. 3), the overall performance is not worse than voice

onset-based (also see the comparison between the corre-

lation values from Fig. 5c). Therefore the application of

speech artifact removal on voice-trigger-free data is

feasible.

As a comparison we also show the performance of ICA

on articulation artifact rejection (Fig. 6a–c, Column 4).

Although diminished, the correlations remained substantial

after removal of the artifact-related ICs, suggesting that the

artifacts are not completely removed. A paired t test

showed significant differences in the correlations of the

ERP and coil activities between the ICA and RIDE (VO-

based) collapsed across movement directions: t(14) = 3.7,

p = .002. To further test whether the remaining relatively

high correlations after ICA correction are due to not

removing enough ICs, we calculated the mean absolute

correlations (for the forward–backward dimension; Fig. 6a)

as a function of the number of ICs removed, which most

strongly resemble the articulation artifact topography

(Fig. 6d). We also plotted the change in N1 amplitude for

each set of ICs removed (Fig. 6e).

Discussion

The single participant Experiment 1 aimed at relating the

putative articulation artifact component in the ERP while

pronouncing different disyllabic pseudowords to the

activity of the articulators as measured with EMA. We

obtained the following information about the properties of

the observed anterior-positive/posterior-negative compo-

nent extracted by means of RIDE.

First, the component showed very consistent scalp

topography across rather different articulation patterns,

though subtle differences can still be detected by sensitive

DISS measures. This is a promising finding for any attempt

to deal with the artifact. If the topography were in fact

strongly different for different phonemes, the situation

would become much more complex.

Second, the onset of what we consider the artifact

component in the ERP was very tightly coupled to the

onset of articulator movements with a high correlation

close to unity, confirming the intimate relationship between

Fig. 6 a–c Correlation between time courses of coil movements and

ERPs before (Column 1) and after removal of the articulation artifact

based on voice onset (S ? R scheme, Column 2) and estimated C

latency (S ? C scheme, Column 3) and after removal of the first 5

artifact-related ICs from ICA (Column 4). Each dot corresponds to

one disyllable. d The reduction of mean correlations from A by ICA

as a function of number of ICs removed in the order of topographical

similarity with the artifact. For reference, the horizontal orange line

shows the corresponding value for RIDE (r = .045). e The change in
N1 amplitude from PO9, averaged within [160, 200 ms]) as a function

of number of artifact ICs removed (Color figure online)
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these activities. Both onsets were far earlier than that of the

voice, sometimes—depending on the initial phonemes—

preceding the voice trigger by 300 ms (Fig. 5a, c). This

poses an important limitation to the use of ERPs preceding

the voice onset in overt articulation tasks without appro-

priate artifact removal or a strict limitation of the speech

material. Please note that the precise onset asynchrony

between artifact onset and measured speech onset should

strongly depend on the accuracy of the method used to

determine speech onsets. We will come back to this issue

in the ‘‘General Discussion’’ section. Third, although the

artifact topographies did not differ strongly between

articulation patterns, their time courses did. Specifically,

the transmission of articulator displacement into ERP

amplitude of the artifacts, rather than the topographies, is

modulated. This was to be expected because different

phoneme sequences may cause different artifact wave-

forms over time. Although more detailed analyses would

exceed the scope of the present study and intentions, the

specific coil information and how precisely the coils relate

to the EEG artifact at different moments in time may reveal

valuable additional information. For practical purposes of

pure EEG recordings during speech production without

EMA information, knowledge of such modulations is of

little value. As we demonstrate here, the more fine grained

EMA information is not necessary in order to deal with the

artifact.

Finally, and of great importance for the question of

artifact removal is the temporal relationship between the

EEG and the articulator movements. In the present exper-

iment we could use the articulator movements as an

external criterion for the presence and strength of the

artifact over time and its attenuation by artifact correction.

In short, any EEG activity that shows a relationship to this

movement measure over time may be caused by the

articulator movement. Although muscle activity and hence

movements are caused by the brain, the relationship

between brain activity and movement or force is not a

simple linear relationship (e.g., Sommer et al. 1994), in the

sense that muscle activity is a direct function of the scalp

recorded EEG signal. Indeed there were several articulation

patterns (reflected in our measure lumping together all

vertical movements of the coils) that showed correlations

with the ERP over time of r[ .5. Together with the very

high correlation of the onsets of the R-component cluster in

the GFP and the mean vertical coil movements, this

strongly suggests a causal relationship between articulator

movements and the frontal positive/posterior negative

ERP. When only the S-component cluster, that is, the ERP

without the R-component cluster, was correlated with the

vertical coil movements, this correlation was strongly

reduced even for those disyllables where the correlation

was strongest. This is an indication that removal of the

R-component cluster from the ERP is an efficient proce-

dure to eliminate the articulation artifact from the ERP.

In contrast to RIDE, ICA could not remove the artifacts

effectively, since the correlations with the coil movements

were still considerable after removal of the major artifact-

related ICs. It is interesting to note that the correlations of

the ICA-corrected ERP with the articulator movements in

the present experiment were similar in size to those

reported by Porcaro et al. (2015) with lip-EMG. Moreover,

ICA seems to distort early, articulation-ICs. This is illus-

trated in Fig. 6d, e. The distortion of early component can

also be seen in the paper of Porcaro et al. (2015; Fig. 4).

Although in principle the correlation of the ICA-corrected

ERP and the articulator activity can decrease to values

almost as low as those obtained after RIDE when more ICs

are removed this comes at the cost of increasingly and

seriously distorting the N1 (Fig. 6e) and also the P1 com-

ponent (see Exp. 2).

Experiment 1 had mainly aimed at demonstrating that

the R-component cluster as identified here is indeed related

to movements of the articulators. This was only a single

case study, requiring high motivation on the part of the

participant, and quite unlike the typical language produc-

tion study. Therefore, Experiment 2 analyzed ERP data

from a typical picture naming task taken from a group of

participants in order to assess the generalization of the

findings of Experiment 1. In particular, we were interested

whether in a more complex task the same component

structure would be observed, and furthermore, we wanted

to establish its relationship to voice onset. Finally we

revisited the question of artifact removal with RIDE and

compared it with the more common approach of ICA.

Experiment 2

Methods

Participants

24 right-handed native German speakers (14 women; mean

age = 22.3 years; range 18–30) were paid for participation

or received partial fulfillment of a curriculum requirement.

All participants reported normal or corrected-to-normal

visual acuity and normal color vision. Informed consent

was obtained before the experiment. One participant was

replaced because of high error rates.

Materials

We used 125 color photographs of common objects from

five broad categories (animals, clothing, food and bever-

ages, furniture, and tools, please see Appendix II for
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details). The size of the photographs was 3.5 9 3.5 cm at

an approximate viewing distance of 90 cm from the

monitor.

Procedure and Design

Each trial began with a fixation cross, displayed in the

centre of a light-grey computer monitor. After 500 ms the

fixation cross was replaced by a picture, which remained on

the screen until vocal response onset with a maximal

duration of 2 s. The stimulus was followed by a blank

screen for 1 s. Participants were instructed to name each

picture as fast and accurately as possible. Naming times

were recorded with a microphone and latencies were

measured by voice key. Voice keys are a still frequently

used method to determine naming latencies in current

studies combining overt naming with EEG recordings,

although many researchers use manual re-alignment of

vocal onsets on basis of the spectrograms (e.g., Protopapas

2007). Naming accuracy and voice key functioning were

monitored online by the experimenter. Trials in which the

voice key triggered too early and trials with wrong naming

responses were coded online by the experimenter and

excluded from further analyses.

The experiment consisted of different conditions.

However, for the present purpose we selected a baseline

condition in which the pictures were presented in a random

sequence. Each picture was presented and named 5 times,

resulting in 625 trials. Prior to the experiment participants

were familiarized with the pictures and their names as

follows: all photographs were presented in random order on

the screen and participants were asked to name each pic-

ture. If necessary, they were corrected or the picture name

was provided by the experimenter. After this procedure

was repeated once, participants were given a color sheet

with all pictures and their names.

Data recording

The electroencephalogram (EEG) was recorded with Ag/

AgCl electrodes from 64 sites according to the extended

10–20 system, referenced to the left mastoid, and at a

sampling rate of 500 Hz (bandpass 0.032–70 Hz). Elec-

trooculograms were recorded from the left and right outer

canthi and beneath and above the left eye. Electrode

impedance was kept below 5 kX. Prototypical eye move-

ments for later artifact correction were obtained in a cali-

bration procedure.

RIDE

Figure 7a shows the grand average ERP across all partic-

ipants (mean voice key latency = 647 ms). The ERP was

characterized by the usual early visual components fol-

lowed by a pronounced parietal positive component,

resembling the P3. Starting at around 650 ms a frontal

positive/posterior negative component appeared, which

was similar to what had been seen in Experiment 1 and

identified as articulation artifact. Consistent with Experi-

ment 1, we separated the speech ERP into ERP (denoted as

S) and articulation artifact (denoted as R). The only dif-

ference to Experiment 1 was that, here R (the artifact) was

extracted based on the voice key information since voice

onset was not available.

Results and Discussion

RIDE Decomposition

Figure 7 shows the stimulus-locked time courses and

topography evolutions of the ERP and each RIDE com-

ponent cluster (S and R). ERP shows mixing of component

clusters with dynamically changing topography over time.

The scenario in the RIDE components is in line with

expectations based on Experiment 1: The S-component

cluster captured the early ERP components and the P3b-

like activity, and the R component emerged at a later time

stage and completely captured the frontal-positive/poste-

rior-negative artifact activity.

Figure 8 depicts individual time courses of the GFP of

the R component for all participants. It shows that the

onsets of R can be as early as around -400 ms prior to

voice key latency, consistent with Experiment 1. The

topography of R (averaged from -300 ms to 500 ms rel-

ative to voice key latency) was somewhat variable across

participants, with most of them showing the frontal-posi-

tive/parietal-negative pattern already observed in Experi-

ment 1. Also, the amplitude was quite variable in the order

of about one magnitude across participants.

ERP After Removal of Articulation Artifact

The topography and time course of S (grand averaged, here

S represents the clean ERP) is shown in Fig. 9. The

removal of the R-component cluster, the presumable arti-

fact, significantly affected the ERP amplitude within the

window as early as [300, 500 ms]. A paired t test revealed

a significant amplitude difference between original and S

between 300 and 500 ms is significant (ps\ .05) for 42 out

of 63 electrodes indicated by the red squares in the head

cartoon inserted in Fig. 9. Though not adjusted for multiple

comparisons, it strongly indicates the distortion of ERP

amplitude by articulation artifact in a relatively early time

window.
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Artifact Removal with ICA

We applied ICA on the single trial ERP data of each par-

ticipant and decomposed it into 63 ICs, each of which has a

topography pattern (namely weight distribution across

scalp). We then calculated the correlations between the

topography pattern of ICs and that of the articulation arti-

fact derived from the grand average ERP in the time

window 700–1000 ms. The sorted correlations are shown

for two selected participants in Fig. 10 (ss. #21 and ss. #24

with conspicuous articulation artifact, see Fig. 7). A

number of ICs were highly correlated with the articulation

artifact in terms of topography. However, the correlations

distributed rather linearly from -1 to ?1, offering no clear

cut transition between artifactual and non-artifactual ICs.

Here the correlation of -1 is not related to the articulation

artifact because we have corrected the sign of correlation

by constraining both the topography and waveform to the

same polarity of artifact (see procedures above). We show

the topographies of the five ICs (red) with highest corre-

lations in Fig. 10 and the variance explained in the ERP for

each IC. For removal of the artifactual ICs, the activations

of these five ICs were back-projected to the scalp and

subtracted from the original ERP. Since there is no clear

cutoff it is hard to provide a justification for the number of

ICs to be artifactual. Here we picked the five ICs with the

Fig. 7 Left a–c time courses superimposed for all electrodes for ERP (up), S (middle) and R (down). Right d corresponding topography

evolutions for the wave shapes depicted on the left (Color figure online)

Fig. 8 The global field power of R component cluster (the artifact) locked to voice key latency (VKL, time 0) and its topography averaged from

-300 ms to 500 ms for each participant (Color figure online)
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highest correlations, accounting for a substantial amount of

variance in the data (Fig. 10).

The original ERP and the ICA-reconstructed ERP after

removal of the articulation artifact is shown in Fig. 9 for

the comparison with the results from RIDE. Removing the

five most relevant ICs did not cleanly remove the artifact

components—a significant residue remained in the recon-

structed ERP (see the time window from 700 ms to

900 ms). Paired t tests revealed significant differences in

amplitude reductions in the time window 600–900 ms

between RIDE and ICA across different electrodes (AFz:

t(23) = 2.1, p = .04; Cz: t(23) = 5.2, p\ .001; PO7:

t(23) = 3.71, p\ .01; 38 out of 63 electrodes showed

p\ .05). The other problem is that, after removing the five

ICs most closely resembling the articulation artifact, the

components in the early time window (P1/N1) were also

significantly altered, t(23) = 2.4, p\ 0.05, at PO8 [100,

120 ms]. That means, the more ICs supposedly related to

the frontal artifacts are removed, the less artifact will be

left, but with the consequence to increasingly affect the

Fig. 9 Top Removal of the articulation artifact from the original ERP

by RIDE. The topography array shows the evolution of (stimulus-

locked) grand mean ERP and S. The three plots at the bottom are the

time courses of ERP and S from different electrodes, for comparison.

The green insert in the right panel shows the electrodes (red squares)

where the difference between original ERP and S is significant

already in [300, 500 ms]. Bottom Removal of articulation artifacts

from the original ERP by ICA. Note the change in the early

components in the plots of the waveform especially at posterior

electrodes (Color figure online)
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earlier ERP components. This is probably because ICA

decomposition did not find ICs exclusively capturing the

articulation artifact.

General Discussion

The aim of the present study was to describe the temporal

and topographical properties of articulation-related arti-

facts during overt speech production in the EEG and to

suggest a method to remove the artifacts from the EEG. To

this end, we co-registered activity of the inner and outer

vocal tract, measured with an electromagnetic articulo-

graph, and an EEG during overt articulation from a single

participant. The information derived from this study was

used to describe the artifacts and their relation to articu-

latory movements. Furthermore, we used RIDE to identify

and eliminate articulation artifacts from the EEG. In a

second data set from a group experiment we applied RIDE

to the data of a typical picture naming task in order to

isolate and remove the articulation artifacts from the EEG.

Description of Articulation-Related ERP Activity

In both experiments, about 200–300 ms prior to voice

onset or voice key the frontal positive/posterior negative

activity appeared, which is typical when overt naming or

speaking is required. For Experiment 2 the average range

of this articulation-related activity across the scalp (max–

min) was about 15 microvolt (at its peak latency) but varied

across participants by about one order of magnitude. In the

single participant of Experiment 1 the articulation-related

activity was quite large but within the range of Experiment

2.

Crucially, the topographical distributions of the articu-

lation-related activation pattern were very similar across

disyllables in Experiment 1; for all disyllables the pattern

consisted in a frontal positivity accompanied by a posterior

negativity. In Experiment 2 the grand mean topography of

the articulation-related activity was also characterized by a

posterior negativity but the frontal positivity extended

further to central sites. There was some inter-individual

variability in the distribution of the fronto-central positiv-

ity, but overall the bipolar distribution was consistent.

Please note that the articulation artifact described here is

different from (residual) blink artifacts. Blink topographies

show a frontal focus and quickly fall off towards posterior

sites (e.g., Lins et al. 1993). However our artifact

topographies never showed such a distribution—they were

invariably bipolar with negativities at posterior sites that

were similarly focused as their positive counterparts at

frontal sites.

Consistency of the topography of the articulation-related

activity in the ERP can also be demonstrated by an analysis

of widely different words in Experiment 2 (Fig. 11). In this

analysis we averaged the ERPs with names of pictures that

differed in many respects. However in contrast to the

present Experiment 1 with only one participant, averaging

was done across a group of 24 participants and per word.

Here, although differing in onset, the later part of the ERP

for each word was always characterized by the typical

frontal positivity, accompanied by a posterior negativity.

Fig. 10 Sorted correlations between the topographies of ICs and of

the articulation artifact. The five ICs most closely resembling the

frontal positive/posterior negative artifact are shown along with the

variance explained. Data are from two selected participants with

conspicuous articulation artifacts (Color figure online)
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The DISS analysis (Murray et al. 2008) done on the 7550

pairs among 125 different words showed very low DISS

values (M = 0.26; SD = 0.10), suggesting very similar

artifact topographies. Albeit this overall similarity, artifact

topographies showed subtle variations between words

when the permutation test was applied. 550 of the pairwise

comparisons were statistically significant (ps\ .05, after

Bonferroni correction). Hence, we may conclude that the

articulation-related activity has a rather consistent bipolar

frontal (or fronto-central) positive/posterior negative pat-

tern that nevertheless subtly differs as a function of the

articulation pattern.

Experiment 1 showed that this articulation related pat-

tern in the EEG is strongly correlated over time with the

movement of the articulators (tongue, jaw, and lip). Indeed,

not only facial EMG in the form of lip movements, but

clearly also activities of the main articulators such as

tongue and jaw movements significantly contribute to the

artifact measured in the EEG, and different movement

directions—in particular vertical movements—contribute

to the artifact. Crucially, the onset of the frontal-posi-

tive/posterior negative activity is correlated almost with

unity to the onset of articulator movements. Therefore,

there is little room for doubt that the articulation-related

EEG pattern is indeed largely non-neural in origin and can

therefore be legitimately considered as artifactual contri-

bution to the EEG.

Concerning temporal properties, we found the articula-

tion-related activity to start prior to voice onset in both

experiments. As shown in Experiment 1, also articulatory

movements—as more valid measures of early speech-re-

lated activity—precede voice onset. The decomposition of

the ERP with RIDE allows a more precise look into the

components. The frontal positivity appears to emerge about

200–300 ms before voice onset. This is of course not sur-

prising because articulators have to be adjusted before any

phonemes can be produced. However, the present findings

point out that the threshold setting of measuring the voice

onset is a critical issue when one wants to record ERPs in

an experiment including overt articulation.

Removing Articulation-Related Activity

Given that the articulation-related artifactual part of the

ERP in a language production task can be unambiguously

identified and allocated to a separable ERP component,

methods for separating the artifact-free contribution to the

ERP from the artifactual part can be applied.

We assessed two methods to eliminate the articulation-

related artifacts, RIDE and ICA. ICA has been frequently

used for correcting artifacts of ocular origin and—espe-

cially if guided by eye-tracking—is an excellent method

for this purpose. It has also been employed to correct

artifactual EEG activity induced by articulation (Porcaro

et al. 2015; De Vos et al. 2010). The question remains how

well the ICA is able to correct the typically slow articu-

lation-related activities. In speech production this can be

judged firstly by the correlation with an external measure

of the artifact. Although ICA was able to strongly reduce

this correlation in both the present Experiment 1 and in the

study of Porcaro et al. (2015), the remaining correlations

of[.2 compared unfavorably with the correlations of\.1

obtained by RIDE. A second criterion is the effect of the

correction methods on ERP components occurring before a

speech artifact is likely to be present. In the very recent

work by Porcaro et al. (2015) the speech artifact derived by

ICA was shown to contain a visual P1/N1 complex (Por-

caro et al. 2015; Fig. 3). If these components are removed

as artifacts, also the early ERP signal will be affected. A

similar effect was seen in the present experiments where

the early components were diminished after ICA. In con-

trast, the reconstructed ERP after RIDE did not distort the

early ERP components but cleanly removed only the

frontal-positive/posterior negative artifact activity.

As often the case when one has to select from the

numerous and person-specific ICs it is to some extent a

subjective decision, which IC to drop and which to include

in the reconstructed signal. In the present case, we saw a

trade-off between eliminating the artifact and distorting

early ERP components that are most likely unaffected by

Fig. 11 Examples for the articulation-related artifact for several

different words, averaged across 24 participants. Shown are the scalp

distributions of the ERPs for time segments where the artifact

dominates (Color figure online)
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articulation or leaving the early components unaffected but

(likely) undercorrecting for articulation artifacts. This is

due to the reason that many ICs do not exclusively contain

the artifact-related component but also contain essential

ERP components like P1/N1. ICA is based on the

assumption that ICs are generated by independent sources,

which are supposed to be manifested in the statistically

independent signals. This assumption of independence in

measured signals may not be satisfied even if they could be

indeed generated by unrelated sources, which appears to be

the case for the slow articulation-related artifacts and

processing-generated ERP components (e.g., signal spectra

could not be employed here for the selection of ICs). RIDE

works with the different assumption that component clus-

ters in the ERP have relatively independent latency vari-

ability, but does not require the independence in the signals

of the components. A detailed comparison of the ICA and

RIDE for simulated data was performed by Ouyang et al.

(2015a, b) for different assumptions. In the case of speech

production as shown for the present study, RIDE appears to

be a better option to deal with articulation artifacts. Nev-

ertheless, the performance of these methods may vary

depending on the specific set-up of experiments. Specifi-

cally, the ICA may perform better when an even greater

number of electrodes is used, especially when located at

regions that are highly related to the artifacts. Further

evaluation of the methods should be done.

Limitations

In the following, two limitations are discussed concerning

the choice of speech onset measures. First, recordings of the

actual speech signal are more precise measures of the actual

voice onset than the voice key (for a discussion see Kessler

et al. 2002), and a direct comparison with speech onset

estimates from the speech signal would be desirable. On the

other hand, as discussed above, voice keys are the most

frequently employed method in current studies combining

EEG measures with overt articulation. One reason is that

most of these studies compare identical words in different

conditions, in which case the precise onsets are not so

crucial and the use of voice keys is an economically valid

choice. Given this situation, the use of voice key triggers in

Experiment 2 reflects typical—albeit possibly question-

able—methodology in the area of language production

using overt articulation and EEG measures. The present

paper provides valuable information about the temporal

relation between articulation artifacts and speech onsets as

measured by both voice key triggers (Experiment 2) and by

determination from voice recordings (Experiment 1).

The precise timing between artifact onset and speech

onset depends on the method used to determine speech

onsets, and should differ between these methods. For a test

and critical discussion of biases of voice key measurements

and the pros and cons of this and other methods, please see

Kessler et al. (2002). Thus, our estimates of how early

articulation-induced EEG artifacts will appear relative to

speech onset should depend on how the latter is measured.

However, in our measurements, the temporal relationship

between the voice onset/key latency and the onset of

articulation is remarkably similar across the two experi-

ments. Table 1 gives the means and standard deviations

(SD) of the voice onsets for all disyllables in Experiment 1

and the voice key latencies for all participants in Experi-

ment 2. The onsets of the artifacts were measured with a

5 lV threshold to the GFP of the artifact component (R) in

Experiment 1 and 1 lV for Experiment 2 since the overall

amplitude was much smaller. However, both thresholds are

approximately 10 % of the maximum. Interestingly, in

both experiments, mean artifact onsets preceded the mean

voice markers by almost 300 ms. This shows that (1) the

kind of voice onset measure used is not decisive and that

(2) the ‘‘artifact safe’’ period preceding such triggers ends

already about 300 ms prior to the trigger.

With more accurate onset estimates the relative timing

between the beginning of the articulation artifacts and the

beginning of the articulation onset should also vary, and it

would be desirable in future studies to directly compare

speech onset times, especially when comparing different

words across conditions, but also when comparing the same

words with different onsets in different conditions. How-

ever, even though speech onsets are more precise measures,

the principle problem remains that all measures need some

minimal auditory input, while silent and undetected

(pre)articulatory processes (and the corresponding EEG

artifacts) may have already started (e.g., tongue or jaw

movements), as demonstrated in Experiment 1. In this sense

more precise speech onset measures are of limited help.

As to the usefulness or even necessity of voice markers

for the extraction and separation of articulation artifact, our

results showed satisfactory performance for all options. In

the present study we used voice onset for Experiment 1 and

voice key latency for Experiment 2. Taking the two

experiments together, we showed that both voice onset and

voice key are good candidates for representing the articu-

lation latency, in the sense that the result of articulation

removal is successful in a very high degree. If these time

markers had been imprecise, the artifact waveform could

not be cleanly removed or would even remain in the data,

which is opposite to our results (Figs. 4, 5, and 7). The

precision of voice onset is also shown to be slightly better

than direct latency estimation from single trial ERP.

Notably, however, the latency estimation scheme without

any voice triggers is surprisingly good, given the noisy

single trial ERP data. Hence, artifact removal without any

voice markers seems to be a feasible option.
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Finally, as a minor point, RIDE is a secondary pro-

cessing step applied on ERPs after preprocessing. That

means, as long as the preprocessing steps affect the out-

come of ERP, they affect the outcomes of RIDE (as well as

other decomposition methods). Different reference mon-

tages can strongly affect the morphology of ERP (Nunez

et al. 1997). And different reference montages have dif-

ferent advantages in certain circumstances. In principle, we

advocate the optimal usage of reference. But in the present

case, the performance of the artifact removal does not seem

to be compromised by average referencing. As the topog-

raphy showed (Figs. 4 and 7), the artifact were cleanly

removed even when it was spread across the scalp.

Conclusions

From the present analyses we can draw the following

conclusions. (1) During overt speaking there is a fronto(-

central) positive/posterior negative EEG activity consistent

in topography across words, phonemes, and participants

although its amplitude and time course may vary greatly.

Hitherto no such comparison between the artifacts elicited

by different articulations has been available. (2) The onset

and time course of this ERP activity are strongly related to

the onset and time course of articulatory movements across

different articulated disyllables, making it highly likely to

be of non-neural, artifactual origin. (3) The artifact may

start up to three hundred milliseconds before voice onset,

indicating that the ‘‘safe’’ interval without articulation

artifacts in the ERP may be shorter than has been thought.

(4) RIDE allows to remove articulation artifacts without

distorting pre-articulation ERP components, which is effi-

cient for different types of voice onset markers and works

even without any markers. Hence, RIDE provides a novel

tool for removing the speech artifact from the EEG in

unprecedented ways, opening new doors for EEG research

using overt articulation.
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Appendix

Appendix I. Matlab Script for Experiment 1

For Experiment 1 the epoched single trial ERP data after

standard artifact rejection was prepared as a three-dimen-

sional matrix for each participant and each condition

(named data in Matlab workspace). The first dimension is

the data sampling points containing points ranging from

-200 to 2000 ms. The data was down-sampled to 200 Hz

to increase computational speed. The second dimension is

electrodes and the third is single trials. The script for

parameter setup and calling RIDE toolbox for the two

different schemes (S ? C, S ? R) are as follows:

Separating the speech ERP data into S ? C:

Table 1 The temporal

relationship between voice

onset/key latency and measured

onset of artifact

Experiment 1 Experiment 2

Mean (ms) SD (ms) Mean (ms) SD (ms)

Voice onset/key latency 649 44 647 54

Onset of artifact 372 21 353 41

Difference 277 294
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Separating the speech ERP data into S ? R:

The time windows for each component were chosen to

safely cover each component by visual inspection of the

original ERP waveform. The time window is always rela-

tive to stimulus onset but for the R component (when the

component name was named ‘r’ in the program), the time

window is relative to response time (here the voice onset).

That is why there is a negative value for the R time window

[-500, 800 ms]. The variable ‘rt’ is the one dimension

vector for response times. More details can be found in the

manual from http://cns.hkbu.edu.hk/RIDE.htm.

Matlab Script for Experiment 2

For Experiment 2, the data was also down-sampled to

200 Hz to increase computational speed. The script

for parameter setup and calling RIDE toolbox is as

follows:

Appendix II

See Table 2.

Table 2 Target pictures presented in Experiment 2

Sitzen (seating furniture) Couch (couch)

Hocker (stool)

Ohrensessel (wing chair)

Eckbank (corner seat)

Bürostuhl (office chair)

Liegemöbel (lounge furniture) Bett (bed)

Futon (futon)

Liege (divan bed)

Hängematte (hammock)

Schlafsofa (sofabed)

Aufbewahrung (storage) Regal (shelf)

Kleiderschrank (wardrobe)

Vitrine (cabinet)

Truhe (footlocker)

Sideboard (sideboard)

Sanitär (sanitation) Badewanne (bathtub)

Pissoir (urinal)

Waschbecken (basin)

Dusche (shower)

Bidet (bidet)

Textil (textile) Perserteppich (Persian carpet)

Vorhang (curtain)

Rollo (roller blind)

Badvorleger (bath mat)

Tischdecke (tablecloth)

Vögel (birds) Adler (eagle)

Kolibri (hummingbird)

Papagei (parrot)

Geier (vulture)

Eule (owl)

Fische (fishes) Hai (shark)

Aal (eel)

Forelle (trout)

Rochen (ray)

Lachs (salmon)

Insekten (insects) Fliege (fly)

Biene (bee)

Schmetterling (butterfly)

Hirschkäfer (stag beetle)

Ameise (ant)

Huftiere (hoofed animals) Kamel (camel)

Reh (deer)

Pferd (horse)

Esel (donkey)

Schaf (sheep)

Affen (apes) Schimpanse (chimpanzee)

Pavian (baboon)

Gorilla (gorilla)

Orang-Utan (orang-utan)

Mandrill (mandrill)
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